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Abstract

The goal of Predicting Neurological Recovery from
Coma After Cardiac Arrest: The George B. Moody Phy-
sioNet Challenge 2023 is to use longitudinal electroen-
cephalogram (EEG) and electrocardiogram (ECG) record-
ings to predict patient prognosis after cardiac arrest (CA).
As part of the Challenge, our team, UCASFighters, intro-
duced an approach that fuses an 18-layer residual network
and a random forest to predict patient prognosis after CA.
This fusion prevents overfitting and improves the perfor-
mance. We also introduced an improved focal loss func-
tion to handle class imbalance in classification task and
improve model training. Finally, our approach received a
Challenge score of 0.599 (ranked 10th out of 36 teams) on
the hidden test set.

1. Introduction

Currently, cardiac arrest (CA) has one of the highest
mortality rates among all diseases. Due to the severe neu-
rological damage caused by hypoxic-ischemic brain injury
after CA, some patients will still face death after active
treatment [1]. To avoid waste of medical resources, early
prediction of comatose patients after CA is necessary.

Electroencephalogram (EEG) provides information on
neurological function by recording functional activities in
different parts of the brain. It is valuable for evaluating the
prognosis of acute brain injury. Machine learning (ML)
methods have been used to utilize EEG data to predict the
neurological prognosis of comatose patients after CA [2].
However, ML usually uses only artificially predefined fea-
tures. Other potentially relevant features of EEG may be
lost. Furthermore, deep neural networks perform well in
the predicting of comatose patients’ prognoses and have

the potential to utilize long-term trends in EEG [3].
In The George B. Moody PhysioNet Challenge 2023

[4, 5], we introduced an approach that fuses an 18-layer
residual network and a random forest to predict patient
prognosis after CA. We also introduced a focal loss func-
tion that incorporates the false positive rate as a penalty
term. More details are shown below.

2. Method

2.1. Datasets and Preprocessing

Researchers from the International Cardiac Arrest Re-
search consortium(I-CARE) collected 19-channel EEG
data from 1,020 CA patients from seven academic hos-
pitals in the U.S. and Europe. The I-CARE dataset in-
cludes EEG data up to 72 hours after CA, demographic
information and functional neurological outcome from 3
to 6 months after CA. The cerebral performance category
(CPC) score of 1 or 2 (minimal to moderate neurologic
dysfunction) was defined as good neurologic prognosis,
whereas the CPC score of 3-5 (severe neurologic dysfunc-
tion, persistent coma or vegetative state, or death) at 3-6
months was defined as poor prognosis [6].

The EEG data were preprocessed by applying digital
bandpass filters (0.5-30Hz), resampling to 128 Hz, scaling
to the interval ([-1,1]). EEG’s 19 channels are Fp1, Fp2,
F7, F8, F3, F4, T3, T4, C3, C4, T5, T6, P3, P4, O1, O2, Fz,
Cz, and Pz. The EEG was processed to 18 channels: Fp2-
F8, F8-T4, T4-T6, T6-O2, Fp1-F7, F7-T3, T3-T5, T5-O1,
Fp2-F4, F4-C4, C4-P4, P4-O2, Fp1-F3, F3-C3, C3-P3, P3-
O1, Fz-Cz, Cz-Pz. For data up to 72 hours, we intercepted
the first five minutes (38400 points) of each hour and filled
in the missing data with zeros. Then, the 72 five-minute
data segments were cached as intermediate files.
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2.2. Feature Extraction

Since EEG signals are characterized by randomness,
non-stationarity and nonlinear, a single class of features
cannot analyze EEG signals, so we analyze the data from
the last hour in the time, frequency, and nonlinear domains.
We extracted six statistical features in the time domain
including mean, standard deviation, variance, root mean
square, kurtosis, and power for each channel.

Frequency domain analysis has been proved to be ef-
fective in the classification of EEG signals related to other
neural systems [7], so making full use of the characteris-
tics of EEG signals in the frequency domain is conducive
to improving the classification accuracy of the model. The
frequency domain features extracted by us are as follows:

Power Spectral Density (PSD). In the frequency do-
main, the PSD in the δ(0.5 − 4Hz), θ(4 − 8Hz), α(8 −
14Hz) and β(14 − 30Hz) bands are computed using the
fast fourier transform (FFT) of the autocorrelation func-
tion, respectively. [7] x(t) of an EEG signal of length N
is set to have a value of t ranging from 0 to N − 1, and the
autocorrelation function is as follows:

γ̂(i) =
1

N

N−1−i∑
t=0

x(t)x(t+ i), (1)

where i = 0, 1, ..., N − 1. The autocorrelation function is
an even function, so there is:

γ̂(−i) = γ̂(i). (2)

The PSD function is as follows

PSD =

N−1∑
t=−(N−1)

γ(t)e−iωkt, (3)

where k = −(N − 1), ..., 0, 1, ..., N − 1, ωk = 2πk/N .
For a single data, we can get a PSD feature sequence

in 4 × 18 dimensions, where 4 represents the number of
frequency bands and 18 represents the number of channels.

Petrosian Fractal Dimension (PFD). To a time series,
PFD is defined as

PFD =
log10 N

log10 N + log10(N/(N + 0.4Nδ))
, (4)

where N is the series length, and Nδ is the number of sign
changes in the signal derivative [8]. PFD is a scalar feature.
Thus, for a signal 18-channel EEG data, we obtained 18-
dimensional PFD features.

The neural activity of the brain is a complex activity
with nonlinear dynamics, and the method of nonlinear fea-
ture extraction and analysis helps to understand and ex-
plain the dynamics of EEG signals and the corresponding
neural activity process in the brain. In this study, we ex-
tracted the nonlinear domain features as follows:

Permutation Entropy (PE). As a parameter to measure
the complexity of time series [9], PE is widely used in the
detection of chaotic systems, especially in the research of
EEG signals. The following is the calculation process:

Assuming that (x(1), ..., x(N)) is a one-dimensional
EEG sequence of a single channel, the embedded data di-
mension is m(m > 1), and the time delay is t (t > 0),
which constitutes a window (m, t) capable of allowing
the current sequence to pass through it sequentially, phase
space reconstruction is performed on this time series to ob-
tain a matrix Y :

Y =


x(1) x(1 + t) · · · x(1 + (m− 1)t)
x(2) x(2 + t) · · · x(2 + (m− 1)t)

...
...

. . .
...

x(K) x(K + t) · · · x(K + (m− 1)t)

 .

(5)
Each row of matrix Y is a reconstruction component:

Yj = [x(j), x(j + t), ..., x(j + (m− 1)t)] , (6)

where j = 1, 2, ...,K,K = N − (m− 1)t.
The reconstructed components are arranged according

to the ascending order of the value, and there are m! kinds
of arrangement. P1, P2, ..., Pk represents the probability
of occurrence of each permutation, and PE is defined as:

PE = −
k∑

i=1

Pi ln(Pi). (7)

We can get 18 dimensional PE features for a single data.
Finally, we can get 12× 18 dimensional EEG features.

2.3. Model Description

As shown in Figure 1.(a), we proposed a method that
fuses residual network (ResNet) and random forest (RF).
This fusion leverages the deep neural network’s ability
to extract intricate features and RF’s robustness and in-
terpretability, mitigating overfitting and enhancing perfor-
mance. The ResNet and RF are trained independently.

Random Forest (RF)
For a single sample, we extracted 12 × 18 dimensional

EEG features from the last hour EEG data. The dataset
also provides 5-channel ECG data, we extracted two fea-
tures, mean and standard deviation for each channel in the
first hour ECG data. Thus, for a single sample, we obtained
2 × 5 dimensional ECG features. We utilized six clinical
features including Age, Gender, ROSC (return of sponta-
neous circulation), OHCA (out-of-hospital cardiac arrest),
Shockable Rhythm and TTM (targeted temperature man-
agement) from the demographic information.

Then we flatten all the features obtained above into a
232-dimensional feature vector, which is used as the input
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Figure 1. The architecture of our architecture. (a) The overall architecture of our approach. (b) BasicBlock and DownBlock
of the ResNet. (c) Architecture of the 18-layer ResNet built by our team, the number in [] represents the kernel size, the
bolded number represents the number of channels, and “/2” means that the stride is 2, i.e., the data is downsampled.

to the RF classifier. Set the parameters of RF including the
number of estimators, max leaf nodes and random state to
100, 100 and 789 respectively. The output of RF is 0 or 1,
representing good or poor outcome. In addition, we can get
the probability of poor prognosis and the CPC by mapping
the probability to a value in the range of 1 to 5. These are
the outputs that the Challenge requires.

Residual Network (ResNet) [10]
Figure 1.(b) illustrates the two blocks of ResNet. The

BasicBlock comprises two identical convolutions (ker-
nel=3, stride=1) with matching input and output dimen-
sions. In contrast, the first convolutional layer of Down-
Block has a stride of 2, and output dimension twice that of
the input. Refer to Figure 1.(c), by employing BasicBlock
and DownBlock, we constructed an 18-layer ResNet tai-
lored for one-dimensional convolutions, ideal for process-
ing time series data. In Figure 1.(a), we processed each
hour’s data individually using ResNet, generating a two-
dimensional output for each hour. With 72 hours of data,
we obtained 72 outputs. These outputs were then averaged,
consolidating the results for each hour. Subsequently, we
applied a softmax layer to obtain the probability for each
category. Finally, the outcome is the category with highest
probability, the CPC is obtained by the same way above.

In prediction, the neural function of the patient is pre-
dicted independently using random forest classifier and
residual network respectively, the probability of each cate-
gory is output, the probability is averaged then the category
with the highest probability is taken as the final prediction.

2.4. Loss Function

Due to sample imbalance problem in dataset, we used a
focal loss function to train ResNet, which is defined as:

FL =

{
−α(1− p)γ log(p), y = 0

−(1− α)pγ log(1− p), y = 1
(8)

where y is the true label, p is the estimated probability of
the model for label 0 (minority category). The hyperpa-
rameter α is the balanced parameter and the non-negative
hyperparameter γ is known as the focusing parameter.

For The George B. Moody PhysioNet Challenge 2023,
the scoring metric is the true positive rate for predicting
an poor outcome with a false positive rate (FPR) less than
or equal to 0.05 at 72 hours. In clinical practice, prognos-
tic assessment influences whether to continue treatment.
False-positive predictions of adverse outcomes are there-
fore very serious and may cost patients who could regain
consciousness their lives. Therefore, we add the FPR as
a penalty term to the focal loss function. The final loss
function is as follows:

Loss = FL+ β · FPR, (9)

where β is the hyperparameter that regulates FPR’s weight.

2.5. Model Training

ResNet model is trained 80 epochs with single-sample
update method. Adam with an initial learning rate of 0.001
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was applied for model optimization. The hyper-parameters
were adjusted according to the model 5-fold cross valida-
tion performance on the public training dataset to achieve
optimal performance. Finally, we set α, γ and β to 0.63,
2 and 0.0002, respectively. In addition, the parameters in-
cluding the number of estimators, max leaf nodes and ran-
dom state of the RF classifier were set to 100, 100 and 789.

3. Results

We evaluated our approach through 5-fold cross-
validation on the public training set with the Challenge
evaluation metric. Then our approach was evaluated by
Challenge organizer on the hidden validation and test set.
The results are shown in Table 1.

Training Validation Test Ranking
0.552± 0.09 0.687 0.599 10/36

Table 1. True positive rate at a false positive rate of 0.05
(the official Challenge score) for our final selected entry
(team UCASFighters), including the ranking of our team
on the hidden test set. We used 5-fold cross validation on
the public training set, repeated scoring on the hidden val-
idation set, and one-time scoring on the hidden test set.

4. Discussion and Conclusion

We introduced an approach that fuses an 18-layer resid-
ual network and a random forest (RF) to predict patient
prognosis after CA. The results show that our method is
effective and feasible.

There are some limitations of our work. Firstly, we only
utilized the first 5 minutes EEG data for each hour. And
we only extract features as RF’s inputs from the last hour’s
EEG data and the first hour’s ECG data. We did not fully
utilize the dataset. Secondly, we have not identified a more
effective data preprocessing method, so the data contains
a lot of noise, which could potentially influence the final
predictions. Thirdly, we have not fully harnessed the tem-
poral changes in EEG data, the potential of deep neural
networks has yet to be explored.
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